A dominant negative Egr inhibitor blocks nerve growth factor-induced neurite outgrowth by suppressing c-Jun activation: role of an Egr/c-Jun complex.

نویسندگان

  • Yechiel Levkovitz
  • Jay M Baraban
چکیده

Members of the Egr family of transcription factors are rapidly and robustly induced by neurotransmitters and neurotrophins and have been implicated in mediating enduring changes in neuronal function elicited by these stimuli. Because we have found in previous studies that a dominant negative inhibitor of Egr action, the Egr zinc finger domain (ZnEgr), blocks NGF-induced neurite outgrowth in PC12 cells, we have used this preparation to help identify the downstream targets of Egr proteins involved in plasticity. Our investigation into the mechanism of action of ZnEgr indicates that it blocks NGF-induced neurite outgrowth by suppressing activation of c-Jun, a critical step in the signaling pathway mediating this response. Although we had assumed that ZnEgr exerts its effects by binding to the Egr response element (ERE) and thereby blocking target gene regulation by Egr proteins, this classical mode of action appears to be too slow to mediate the effects of Egr proteins on c-Jun activation. In evaluating alternative ERE-independent mechanisms of Egr (and ZnEgr) action, we found that Egr1 and c-Jun coprecipitate and that ZnEgr disrupts formation of the Egr1/c-Jun complex. Furthermore, mutations of ZnEgr that greatly impair or abolish its ability to bind to the ERE do not block its ability to suppress c-Jun activation or neurite outgrowth induced by NGF. Accordingly, our studies indicate that Egr and ZnEgr proteins regulate c-Jun activation via a novel mechanism, protein-protein interaction with c-Jun, rather than via their classical mode of action, binding to the ERE.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A dominant negative inhibitor of the Egr family of transcription regulatory factors suppresses cerebellar granule cell apoptosis by blocking c-Jun activation.

To investigate the role of the Egr family of transcription regulatory factors in neuronal apoptosis, we examined the effect of a dominant negative Egr inhibitor construct in a well characterized in vitro paradigm, cerebellar granule cell death induced by withdrawal of depolarizing concentrations of extracellular potassium. We found that this apoptotic stimulus increases the activity of a report...

متن کامل

Blockade of NGF-induced neurite outgrowth by a dominant-negative inhibitor of the egr family of transcription regulatory factors.

Although it is well established that members of the Egr family of transcription regulatory factors are induced in many neuronal plasticity paradigms, it is still unclear what role, if any, they play in this process. Because NGF stimulation of pheochromocytoma 12 cells elicits a robust induction of Egr family members, we have investigated their role in mediating long-term effects elicited by NGF...

متن کامل

Activation of human monoamine oxidase B gene expression by a protein kinase C MAPK signal transduction pathway involves c-Jun and Egr-1.

Monoamine oxidases (MAO) A and B deaminate a number of biogenic amines. Aberrant expression of MAO is implicated in several psychiatric and neurogenerative disorders. In this study, we have shown that phorbol 12-myristate 13-acetate (PMA) increases human MAO B, but not MAO A, gene expression. The sequence between -246 and -225 bp consists of overlapping binding sites (Sp1/Egr-1/Sp1) that are re...

متن کامل

Molecular mechanisms underlying the proangiogenic effect of factor XIII.

OBJECTIVE Coagulation Factor XIII (FXIII) was previously shown by us to induce angiogenesis. The aim of this study was to elucidate the molecular events underlying the proangiogenic effects of activated FXIII (FXIIIa) on human umbilical vein endothelial cells (HUVECs). METHODS AND RESULTS As shown by coimmunoprecipitation studies, FXIIIa crosslinked alpha(v)beta3 with vascular endothelial gro...

متن کامل

Modulation of H2O2- Induced Neurite Outgrowth Impairment and Apoptosis in PC12 Cells by a 1,2,4-Triazine Derivative

Introduction: Increased oxidative stress is widely accepted to be a factor in the development and progression of Alzheimer’s disease. Triazine derivatives possess a wide range of pharmacological activities including anti-oxidative and anti-in.ammatory actions. In this study, we aimed to investigate the possible protective effect of 3-thioethyl-5,6-dimethoxyphenyl-1,2,4-triazine (TEDMT) on H2O2-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 22 10  شماره 

صفحات  -

تاریخ انتشار 2002